Biohydrogen production by the co-culture of *Clostridium beijerinckii* and *Rhodobacter capsulatus* with acid resistance Yang Zhang^{1*}, Jifeng Yuan¹, Liejin Guo² - 1 School of Life and Science, Xiamen University, Xiamen, 361102, P.R. China - 2 State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China The co-culture of dark- and photo-fermentative bacteria has been regarded as a promising way for bio-hydrogen production. However, the low hydrogen production performance of photo-fermentative bacteria at acidic condition badly limits the co-culture hydrogen production. In this work, we obtained five mutants of *Rhodobacter capsulatus* with acid resistance by Tn7 transposon, which is an efficient genetic tool for random mutation. The mutant of *R. capsulatus* ZYac2 with optimum hydrogen production performance at low pH was selected for co-culture fermentation with *Clostridium beijerinckii* YA001. A four-factor and four-level orthogonal experimental array was designed and conducted to study the effects of the ratio of dark- to photo-fermentative bacteria, initial pH, phosphate concentration, and light intensity on hydrogen yield. The highest hydrogen yield of 3948.3 mL/L was obtained at the ratio of dark- to photo-fermentative bacteria of 1:1, light intensity of 9000 lux, initial pH of 7.5, and phosphate buffer concentration of 40 mM. And the significance of the four parameters on hydrogen yield was listed in high-to-low order as: initial pH, ratio of dark- to photo-fermentative bacteria, phosphate concentration, and light intensity. At last, a high hydrogen yield of 326 mL/g-cornstalk was obtained by this co-culture system using cornstalk pretreated by diluted acid as a substrate. Fig.1- Schematic diagram of Tn7 transposon mutation Table 1- A L₁₆ (4⁴) orthogonal array and experimental results | | | _ | _ | | | |---------------------------------------|---------------------|-------------------|--------------------------------|--------------------------|--| | Ratio of dark- and photo-fermentative | Light intensity (B) | Initial pH
(C) | Phosphate buffer concentration | Hydrogen
yield / mL/L | Maximum hydrogen production rate (V_m) | | bacteria (A) | /lux | | (D)/mM | | /mL/Lh | | 1:0.2 | 3000 | 7 | 20 | 2170.6±51.2 | 80.2±2.1 | | 1:1 | 7000 | 8 | 20 | 3049.5 ± 62.8 | 93.6 ± 3.6 | | 1:3 | 9000 | 8.5 | 20 | 2267.4±43.8 | 73.5 ± 5.1 | | 1:0.5 | 5000 | 7.5 | 20 | 2063.3 ± 59.8 | 71.2 ± 9.2 | | 1:0.5 | 3000 | 8.5 | 40 | 2628.6 ± 68.3 | 79.4 ± 7.3 | | 1:3 | 3000 | 8 | 30 | 2641.3 ± 46.1 | 78.6 ± 5.8 | | 1:1 | 3000 | 7.5 | 50 | 2579.2 ± 50.5 | 73.1 ± 6.4 | | 1:0.2 | 7000 | 8.5 | 50 | 2397.1 ± 39.6 | 72.4 ± 2.9 | | 1:3 | 5000 | 7 | 50 | 2534.8±31.5 | 80.4 ± 3.7 | | 1:0.2 | 5000 | 8 | 40 | 3059.7 ± 67.1 | 80.3 ± 2.4 | | 1:0.5 | 9000 | 8 | 50 | 3559.7±74.9 | 86.4 ± 6.9 | | 1:0.5 | 7000 | 7 | 30 | 2430.9 ± 64.4 | 73.6 ± 12.1 | | 1:1 | 9000 | 7 | 40 | 2761.3 ± 84.1 | 82.2 ± 6.9 | | 1:1 | 5000 | 8.5 | 30 | 3269.4±81.9 | 96.1 ± 4.6 | | 1:3 | 7000 | 7.5 | 40 | 2724.5±91.2 | 80.4 ± 5.8 | | 1:0.2 | 9000 | 7.5 | 30 | 3126.8 ± 83.6 | 93.8 ± 7.1 | Table 4- Hydrogen production by different fermentation systems using cornstalk pretreated by diluted acid | Fermentation type | Hydrogen yield /mL/g-cornstalk | V_m /mL/L/h | |-------------------------|--------------------------------|------------------| | Photo-fermentation | 242.6 ± 6.8 | 65.1 ± 5.9 | | Dark-fermentation | 105.8 ± 5.7 | 131.7 ± 10.7 | | Two-step fermentation | 291.3 ± 10.1 | | | Co-culture fermentation | 326.5 ± 12.3 | 102.7 ± 5.9 | Fig.2- Hydrogen production by transposon mutants Table 2- Variance analysis of different factors on hydrogen yield | Factors | Sum of square | Freedom | Mean of | F | P | Significance | |---------|---------------|---------|---------|-------|-----------------|--------------| | | | | square | | | | | | | | | | | | | A | 0.688E6 | 3 | 0.196E6 | 1.015 | 0.034 | Yes | | | | | | | | | | В | 0.375E6 | 3 | 0.125E6 | 0.671 | 0.034 | Yes | | | | | | | | | | C | 0.811E6 | 3 | 0.270E6 | 1.451 | 0.028 | Yes | | | | | | | | | | D | 0.555E6 | 3 | 0.185E6 | 0.992 | 0.021 | Yes | | | | | | | | | | Error | 0.559E6 | 3 | 0.186E6 | | $\alpha = 0.05$ | | | | | | | | | | The significance of the four parameters on hydrogen yield was listed in high-to-low order as: initial pH, ratio of dark- to photo-fermentative bacteria, phosphate concentration, and light intensity Table 3- Verification tests for orthogonal experiments under the ratio of dark- to photofermentative bacteria of 1:1, initial pH of 7.5, and phosphate buffer concentration of 40 mM | lk | Light intensity /lux | V _m /mL/Lh | Hydrogen yield/mL/L | Final pH | |----|----------------------|-----------------------|---------------------|----------| | | 3000 | 119.5±22.1 | 3359.4 ± 100.7 | 6.21 | | | 5000 | 114.2 ± 11.4 | 3451.8 ± 126.4 | 6.34 | | | 7000 | 107.9 ± 24.7 | 3851.7 ± 153.7 | 6.61 | | | 9000 | 104.8 ± 10.7 | 3948.3 ± 116.5 | 6.70 |