至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation

Nat Commun. 2021-02; 
Timothy H Tran, Albert H Chan, Lucy C Young, Lakshman Bindu, Chris Neale, Simon Messing, Srisathiyanarayanan Dharmaiah, Troy Taylor, John-Paul Denson, Dominic Esposito, Dwight V Nissley, Andrew G Stephen, Frank McCormick, Dhirendra K Simanshu
Products/Services Used Details Operation
Catalog Antibody Avi-tag—GenScript A01738 (1:5000) Get A Quote

摘要

The first step of RAF activation involves binding to active RAS, resulting in the recruitment of RAF to the plasma membrane. To understand the molecular details of RAS-RAF interaction, we present crystal structures of wild-type and oncogenic mutants of KRAS complexed with the RAS-binding domain (RBD) and the membrane-interacting cysteine-rich domain (CRD) from the N-terminal regulatory region of RAF1. Our structures reveal that RBD and CRD interact with each other to form one structural entity in which both RBD and CRD interact extensively with KRAS. Mutations at the KRAS-CRD interface result in a significant reduction in RAF1 activation despite only a modest decrease in binding affinity. Combining our structur... More

关键词