In 2003, we reported that 129-derived strains of mice carry a naturally occurring nonsense mutation at codon 27 of the Poli gene that would produce a polι peptide of just 26 amino acids, rather then the full-length 717 amino acid wild-type polymerase. In support of the genomic analysis, no polι protein was detected in testes extracts from 129X1/SvJmice, where wild-type polι is normally highly expressed. The early truncation in polι occurs before any structural domains of the polymerase are synthesized and as a consequence, we reasoned that 129-derived strains of mice should be considered as functionally defective in polι activity. However, it has recently been reported that during the maturation of the Pol... More
In 2003, we reported that 129-derived strains of mice carry a naturally occurring nonsense mutation at codon 27 of the Poli gene that would produce a polι peptide of just 26 amino acids, rather then the full-length 717 amino acid wild-type polymerase. In support of the genomic analysis, no polι protein was detected in testes extracts from 129X1/SvJmice, where wild-type polι is normally highly expressed. The early truncation in polι occurs before any structural domains of the polymerase are synthesized and as a consequence, we reasoned that 129-derived strains of mice should be considered as functionally defective in polι activity. However, it has recently been reported that during the maturation of the Poli mRNA in 129-derived strains, exon- 2 is sometimes skipped and that an exon-2-less polι protein of 675 amino acids is synthesized that retains catalytic activity in vitro and in vivo. From a structural perspective, we found this idea untenable, given that the amino acids encoded by exon-2 include residues critical for the coordination of the metal ions required for catalysis, as well as the structural integrity of the DNA polymerase. To determine if the exon-2-less polι isoform possesses catalytic activity in vitro, we have purified a glutathione-tagged full-length exon-2-less (675 amino acid) polι protein from baculovirus infected insect cells and compared the activity of the isoform to full-length (717 amino acid) GST-tagged wild-type mouse polι in vitro. Reaction conditions were performed under a range of magnesium or manganese concentrations, as well as different template sequence contexts. Wild-type mouse polι exhibited robust characteristic properties previously associated with human polι's biochemical properties. However, we did not detect any polymerase activity associated with the exon-2-less polι enzyme under the same reaction conditions and conclude that exon-2-less polι is indeed rendered catalytically inactive in vitro.