The development of an effective malarial vaccine is an urgent need. Most glycosylphosphatidylinositol (GPI)-anchored proteins of Plasmodium parasites are exposed to neutralizing antibodies, and several are advanced vaccine candidates. In the present study, Plasmodium vivax Pv32 (PVX_084815) as a hypothetical, predicted GPI-anchored and cysteine-rich motif was identified from our previous findings with a focus on its antigenic profiling. The orthologue gene pv32, a predicted GPI anchor of P. falciparum PF3D7_1434400, has still not been well studied.
The development of an effective malarial vaccine is an urgent need. Most glycosylphosphatidylinositol (GPI)-anchored proteins of Plasmodium parasites are exposed to neutralizing antibodies, and several are advanced vaccine candidates. In the present study, Plasmodium vivax Pv32 (PVX_084815) as a hypothetical, predicted GPI-anchored and cysteine-rich motif was identified from our previous findings with a focus on its antigenic profiling. The orthologue gene pv32, a predicted GPI anchor of P. falciparum PF3D7_1434400, has still not been well studied.