There is an urgent need to develop new and safer antitubercular agents that possess a novel mode of action. We synthesized and evaluated a novel series of 3-aminomethyl 4-halogen benzoxaboroles as Mycobacterium tuberculosis (Mtb) leucyl-tRNA synthetase (LeuRS) inhibitors. A number of Mtb LeuRS inhibitors were identified that demonstrated good antitubercular activity with high selectivity over human mitochondrial and cytoplasmic LeuRS. Further evaluation of these Mtb LeuRS inhibitors by in vivo pharmacokinetics (PK) and murine tuberculosis (TB) efficacy models led to the discovery of GSK3036656 (abbreviated as GSK656). This molecule shows potent inhibition of Mtb LeuRS (IC = 0.20 μM) and in vitro antitubercular... More
There is an urgent need to develop new and safer antitubercular agents that possess a novel mode of action. We synthesized and evaluated a novel series of 3-aminomethyl 4-halogen benzoxaboroles as Mycobacterium tuberculosis (Mtb) leucyl-tRNA synthetase (LeuRS) inhibitors. A number of Mtb LeuRS inhibitors were identified that demonstrated good antitubercular activity with high selectivity over human mitochondrial and cytoplasmic LeuRS. Further evaluation of these Mtb LeuRS inhibitors by in vivo pharmacokinetics (PK) and murine tuberculosis (TB) efficacy models led to the discovery of GSK3036656 (abbreviated as GSK656). This molecule shows potent inhibition of Mtb LeuRS (IC = 0.20 μM) and in vitro antitubercular activity (Mtb H37Rv MIC = 0.08 μM). Additionally, it is highly selective for the Mtb LeuRS enzyme with IC of >300 μM and 132 μM for human mitochondrial LeuRS and human cytoplasmic LeuRS, respectively. In addition, it exhibits remarkable PK profiles and efficacy against Mtb in mouse TB infection models with superior tolerability over initial leads. This compound has been progressed to clinical development for the treatment of tuberculosis.