Outer membrane TonB-dependent transducers (TBDTs) actively transport ferric siderophore complexes from the extracellular environment into Gram-negative bacteria. They also participate in a cell-surface signaling regulatory pathway that results in upregulation of the transducer itself, in response to iron-deplete conditions. The TBDT PupB transports ferric pseudobactin, and signals through its N-terminal signaling domain (NTSD), while the TBDT homolog PupA is signaling-inactive. Here, we report the NMR chemical shift assignments of the PupB-NTSD. This information will provide the basis for structural characterization of the PupB-NTSD to further explore its signaling properties.
Outer membrane TonB-dependent transducers (TBDTs) actively transport ferric siderophore complexes from the extracellular environment into Gram-negative bacteria. They also participate in a cell-surface signaling regulatory pathway that results in upregulation of the transducer itself, in response to iron-deplete conditions. The TBDT PupB transports ferric pseudobactin, and signals through its N-terminal signaling domain (NTSD), while the TBDT homolog PupA is signaling-inactive. Here, we report the NMR chemical shift assignments of the PupB-NTSD. This information will provide the basis for structural characterization of the PupB-NTSD to further explore its signaling properties.