Nocardia seriolae has become one of the major pathogens affecting the aquaculture industry and causes Nocardiosis, a highly devastating disease of marine and freshwater fish that leads to severe economic losses. Therefore, research efforts towards developing efficacious vaccines to control this disease are of high importance. In this study, the hypoxic response protein 1 (HRP1) cloned into pET32a vector was expressed, and produced in Escherichia coli strain BL21 (DE3). The antigenicity of purified recombinant TRX-tagged HRP (rHRP1) was analysed by western blotting using largemouth bass anti-N. seriolae sera. The results showed that largemouth bass anti-N. seriolae sera could specifically detect a 33 kDa rHRP1 ... More
Nocardia seriolae has become one of the major pathogens affecting the aquaculture industry and causes Nocardiosis, a highly devastating disease of marine and freshwater fish that leads to severe economic losses. Therefore, research efforts towards developing efficacious vaccines to control this disease are of high importance. In this study, the hypoxic response protein 1 (HRP1) cloned into pET32a vector was expressed, and produced in Escherichia coli strain BL21 (DE3). The antigenicity of purified recombinant TRX-tagged HRP (rHRP1) was analysed by western blotting using largemouth bass anti-N. seriolae sera. The results showed that largemouth bass anti-N. seriolae sera could specifically detect a 33 kDa rHRP1 protein. Further, the vaccine efficacy of rHRP1 was evaluated in a largemouth bass fish model by calculating the relative percent survival (RPS). rHRP1 incurred an RPS of 73.33% as compared to the control group. Immunological analysis showed that rHRP1 could produce significantly higher serum concentrations of anti-N. seriolae antibodies and serum lysozyme activity as compared to the control groups. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that rHRP1 significantly enhanced the expression of immune-related genes, such as IL-12p40, IL-8, IL-1β, TNFα, IFNγ, NKEF, MHCIα, MHCIIα, CD4-1, CD8α, IgM, NF-κβ, STAT3, IRF4, RORα, and CCL20. These results indicate that rHRP1 may be a promising vaccine candidate against nocardiosis.,Copyright © 2020 Elsevier Ltd. All rights reserved.