Base-editing technologies enable the introduction of point mutations at targeted genomic sites in mammalian cells, with higher efficiency and precision than traditional genome-editing methods that use DNA double-strand breaks, such as zinc finger nucleases (ZFNs), transcription-activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) system. This allows the generation of single-nucleotide-variant isogenic cell lines (i.e., cell lines whose genomic sequences differ from each other only at a single, edited nucleotide) in a more time- and resource-effective manner. These single-nucleotide-variant clonal cell lin... More
Base-editing technologies enable the introduction of point mutations at targeted genomic sites in mammalian cells, with higher efficiency and precision than traditional genome-editing methods that use DNA double-strand breaks, such as zinc finger nucleases (ZFNs), transcription-activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) system. This allows the generation of single-nucleotide-variant isogenic cell lines (i.e., cell lines whose genomic sequences differ from each other only at a single, edited nucleotide) in a more time- and resource-effective manner. These single-nucleotide-variant clonal cell lines represent a powerful tool with which to assess the functional role of genetic variants in a native cellular context. Base editing can therefore facilitate genotype-to-phenotype studies in a controlled laboratory setting, with applications in both basic research and clinical applications. Here, we provide optimized protocols (including experimental design, methods, and analyses) to design base-editing constructs, transfect adherent cells, quantify base-editing efficiencies in bulk, and generate single-nucleotide-variant clonal cell lines. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Design and production of plasmids for base-editing experiments Basic Protocol 2: Transfection of adherent cells and harvesting of genomic DNA Basic Protocol 3: Genotyping of harvested cells using Sanger sequencing Alternate Protocol 1: Next-generation sequencing to quantify base editing Basic Protocol 4: Single-cell isolation of base-edited cells using FACS Alternate Protocol 2: Single-cell isolation of base-edited cells using dilution plating Basic Protocol 5: Clonal expansion to generate isogenic cell lines and genotyping of clones.