We evaluated enzyme-linked immunosorbent assay (ELISA) specificity for measuring seroantibody responses to two types of retroviral infections in domestic cats: feline immunodeficiency virus (FIV) and feline foamy virus (FFV). We compared the seroreactivity of specific pathogen-free (SPF) cat sera, sera from SPF cats inoculated with either FIV or FFV, and field isolates (e.g., shelter or privately owned cats). Sera from SPF cats experimentally infected with the cognate virus had significantly lower background in both FIV and FFV ELISAs compared to sera from negative field isolates. ELISA values for SPF cats exposed to either FIV or FFV tended to have higher OD values on the opposite ELISA antigen plate. FIV nons... More
We evaluated enzyme-linked immunosorbent assay (ELISA) specificity for measuring seroantibody responses to two types of retroviral infections in domestic cats: feline immunodeficiency virus (FIV) and feline foamy virus (FFV). We compared the seroreactivity of specific pathogen-free (SPF) cat sera, sera from SPF cats inoculated with either FIV or FFV, and field isolates (e.g., shelter or privately owned cats). Sera from SPF cats experimentally infected with the cognate virus had significantly lower background in both FIV and FFV ELISAs compared to sera from negative field isolates. ELISA values for SPF cats exposed to either FIV or FFV tended to have higher OD values on the opposite ELISA antigen plate. FIV nonspecific background absorbance was greater than that of FFV, and 10 of 15 sera samples from FIV seronegative field samples were measured in the indeterminant range. These findings highlight that exposure to off-target pathogens elicit antibodies that may nonspecifically bind to antigens used in binding assays; therefore, validation using sera from SPF animals exposed during controlled infection results in the setting of a cutoff value that may be inappropriately low when applied to field samples. Our work also suggests that infection of domestic cats with pathogens other than FIV results in antibodies that cross-react with the FIV Gag antigen.