Aquaporins are water and solute channel proteins found throughout the kingdoms of life. Ion-conducting aquaporins (icAQPs) have been identified in both plants and animals indicating that this function may be conserved through evolution. In higher plants icAQP function has been demonstrated for isoforms from two of five aquaporin subfamilies indicating that this function could have existed before the divergence of higher plants from green algae. Here a PIP-like aquaporin from the charophytic alga Klebsormidium nitens was functionally characterised in Xenopus laevis oocytes and its expression was found to induce water and ion conductance.
Aquaporins are water and solute channel proteins found throughout the kingdoms of life. Ion-conducting aquaporins (icAQPs) have been identified in both plants and animals indicating that this function may be conserved through evolution. In higher plants icAQP function has been demonstrated for isoforms from two of five aquaporin subfamilies indicating that this function could have existed before the divergence of higher plants from green algae. Here a PIP-like aquaporin from the charophytic alga Klebsormidium nitens was functionally characterised in Xenopus laevis oocytes and its expression was found to induce water and ion conductance.