至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

The IGFBP3/TMEM219 pathway regulates beta cell homeostasis

Nat Commun. 2022-02; 
Francesca D'Addio, Anna Maestroni, Emma Assi, Moufida Ben Nasr, Giovanni Amabile, Vera Usuelli, Cristian Loretelli, Federico Bertuzzi, Barbara Antonioli, Francesco Cardarelli, Basset El Essawy, Anna Solini, Ivan C Gerling, Cristina Bianchi, Gabriella Becchi, Serena Mazzucchelli, Domenico Corradi, Gian Paolo Fadini, Diego Foschi, James F Markmann, Emanuela Orsi, Jan Škrha, Maria Gabriella Camboni, Reza Abdi, A M James Shapiro, Franco Folli, Johnny Ludvigsson, Stefano Del Prato, Gianvincenzo Zuccotti, Paolo Fiorina
Products/Services Used Details Operation
Gene Synthesis with/without ecto-TMEM219 (generated by us in collaboration with GenScript, Piscataway, NJ Get A Quote

摘要

Loss of pancreatic beta cells is a central feature of type 1 (T1D) and type 2 (T2D) diabetes, but a therapeutic strategy to preserve beta cell mass remains to be established. Here we show that the death receptor TMEM219 is expressed on pancreatic beta cells and that signaling through its ligand insulin-like growth factor binding protein 3 (IGFBP3) leads to beta cell loss and dysfunction. Increased peripheral IGFBP3 was observed in established and at-risk T1D/T2D patients and was confirmed in T1D/T2D preclinical models, suggesting that dysfunctional IGFBP3/TMEM219 signaling is associated with abnormalities in beta cells homeostasis. In vitro and in vivo short-term IGFBP3/TMEM219 inhibition and TMEM219 genetic ab... More

关键词