Serological assays for SARS-CoV-2 infection are now widely available for use in diagnostic laboratories. Limited data are available on the performance characteristics in different settings, and at time periods remote from the initial infection. Validation of the Abbott (Architect SARS-CoV-2 IgG), DiaSorin (Liaison SARS-CoV-2 S1/S2 IgG) and Roche (Cobas Elecsys Anti-SARS-CoV-2) assays was undertaken utilising 217 serum samples from 131 participants up to 7 months following COVID-19 infection. The Abbott and DiaSorin assays were implemented into routine laboratory workflow, with outcomes reported for 2764 clinical specimens. Sensitivity and specificity were concordant with the range reported by the manufacturers ... More
Serological assays for SARS-CoV-2 infection are now widely available for use in diagnostic laboratories. Limited data are available on the performance characteristics in different settings, and at time periods remote from the initial infection. Validation of the Abbott (Architect SARS-CoV-2 IgG), DiaSorin (Liaison SARS-CoV-2 S1/S2 IgG) and Roche (Cobas Elecsys Anti-SARS-CoV-2) assays was undertaken utilising 217 serum samples from 131 participants up to 7 months following COVID-19 infection. The Abbott and DiaSorin assays were implemented into routine laboratory workflow, with outcomes reported for 2764 clinical specimens. Sensitivity and specificity were concordant with the range reported by the manufacturers for all assays. Sensitivity across the convalescent period was highest for the Roche at 95.2-100% (95% CI 81.0-100%), then the DiaSorin at 88.1-100% (95% CI 76.0-100%), followed by the Abbott 68.2-100% (95% CI 53.4-100%). Sensitivity of the Abbott assay fell from approximately 5 months; on this assay paired serum samples for 45 participants showed a significant drop in the signal-to-cut-off ratio and 10 sero-reversion events. When used in clinical practice, all samples testing positive by both DiaSorin and Abbott assays were confirmed as true positive results. In this low prevalence setting, despite high laboratory specificity, the positive predictive value of a single positive assay was low. Comprehensive validation of serological assays is necessary to determine the optimal assay for each diagnostic setting. In this low prevalence setting we found implementation of two assays with different antibody targets maximised sensitivity and specificity, with confirmatory testing necessary for any sample which was positive in only one assay.