ENPP1 expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer STING pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single cell RNA-seq (scRNA-seq), we show that ENPP1 overexpression drives primary breast tumor growth and metastasis by synergistically dampening extracellular cGAMP-STING mediated antitumoral immunity and activating immunosuppressive extracellular adenosine (eADO) signaling. In addition to cancer cells, stromal and immun... More
ENPP1 expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer STING pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single cell RNA-seq (scRNA-seq), we show that ENPP1 overexpression drives primary breast tumor growth and metastasis by synergistically dampening extracellular cGAMP-STING mediated antitumoral immunity and activating immunosuppressive extracellular adenosine (eADO) signaling. In addition to cancer cells, stromal and immune cells in the tumor microenvironment (TME) also express ENPP1 that restrains their response to tumor-derived cGAMP. loss-of-function in both cancer cells and normal tissues slowed primary tumor initiation and growth and prevented metastasis in an extracellular cGAMP- and STING-dependent manner. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied total ENPP1 knockout, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Strikingly, we find that breast cancer patients with low expression have significantly higher immune infiltration and improved response to therapeutics impacting cancer immunity upstream or downstream of the cGAMP-STING pathway, like PARP inhibitors and anti-PD1. Altogether, selective inhibition of ENPP1's cGAMP hydrolase activity alleviates an innate immune checkpoint to boost cancer immunity and is therefore a promising therapeutic approach against breast cancer that may synergize with other cancer immunotherapies.