The development and optimisation of a photoaffinity labelling (PAL) displacement assay is presented, where a highly efficient PAL probe was used to report on the relative binding affinities of compounds to specific binding sites in multiple recombinant protein domains in tandem. The N- and C-terminal bromodomains of BRD4 were used as example target proteins. A test set of 264 compounds annotated with activity against the bromodomain and extra-terminal domain (BET) family in ChEMBL were used to benchmark the assay. The pIC50 values obtained from the assay correlated well with orthogonal TR-FRET data, highlighting the potential of this highly accessible PAL biochemical screening platform.
The development and optimisation of a photoaffinity labelling (PAL) displacement assay is presented, where a highly efficient PAL probe was used to report on the relative binding affinities of compounds to specific binding sites in multiple recombinant protein domains in tandem. The N- and C-terminal bromodomains of BRD4 were used as example target proteins. A test set of 264 compounds annotated with activity against the bromodomain and extra-terminal domain (BET) family in ChEMBL were used to benchmark the assay. The pIC50 values obtained from the assay correlated well with orthogonal TR-FRET data, highlighting the potential of this highly accessible PAL biochemical screening platform.