A majority of breast cancer deaths occur due to metastasis of cancer cells to distant organs. In particular, brain metastasis is very aggressive with an extremely low survival rate. Breast cancer cells that metastasize to the brain can enter a state of dormancy, which allows them to evade death. The brain microenvironment provides biophysical, biochemical, and cellular cues, and plays an important role in determining the fate of dormant cancer cells. However, how these cues influence dormancy remains poorly understood. Herein, we employed hyaluronic acid (HA) hydrogels with a stiffness of ~0.4 kPa as an in vitro biomimetic platform to investigate the impact of biochemical cues, specifically alterations in RGD... More
A majority of breast cancer deaths occur due to metastasis of cancer cells to distant organs. In particular, brain metastasis is very aggressive with an extremely low survival rate. Breast cancer cells that metastasize to the brain can enter a state of dormancy, which allows them to evade death. The brain microenvironment provides biophysical, biochemical, and cellular cues, and plays an important role in determining the fate of dormant cancer cells. However, how these cues influence dormancy remains poorly understood. Herein, we employed hyaluronic acid (HA) hydrogels with a stiffness of ~0.4 kPa as an in vitro biomimetic platform to investigate the impact of biochemical cues, specifically alterations in RGD concentration, on dormancy versus proliferation in MDA-MB-231Br brain metastatic breast cancer cells. We applied varying concentrations of RGD peptide (0, 1, 2, or 4 mg/mL) to HA hydrogel surfaces and confirmed varying degrees of surface functionalization using a fluorescently labeled RGD peptide. Post functionalization, ~10,000 MDA-MB-231Br cells were seeded on top of the hydrogels and cultured for 5 days. We found that an increase in RGD concentration led to changes in cell morphology, with cells transitioning from a rounded to spindle-like morphology as well as an increase in cell spreading area. Also, an increase in RGD concentration resulted in an increase in cell proliferation. Cellular dormancy was assessed using the ratio of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK) to phosphorylated p38 (p-p38) positivity, which was significantly lower in hydrogels without RGD and in hydrogels with lowest RGD concentration compared to hydrogels functionalized with higher RGD concentration. We also demonstrated that the HA hydrogel-induced cellular dormancy was reversible. Finally, we demonstrated the involvement of β1 integrin in mediating cell phenotype in our hydrogel platform. Overall, our results provide insight into the role of biochemical cues in regulating dormancy versus proliferation in brain metastatic breast cancer cells.