Agrobacterium-mediated transient expression system has been developed and applied to various plants as alternatives to stable transformation. However, its application in tomatoes is still limited due to low expression efficiency. In this study, we described an improved vacuum-infiltration system that can be used in both tomato fruits and leaves. Notably, this study is the first report of vacuum infiltration in attached tomato fruits. The feasibility of the improved vacuum-infiltration system in Micro-Tom tomato was confirmed by various assays, including multiple fluorescent protein expression analysis, β-glucuronidase activity analysis, and RUBY reporter visualization. Subsequently, the improved vacuum-infiltr... More
Agrobacterium-mediated transient expression system has been developed and applied to various plants as alternatives to stable transformation. However, its application in tomatoes is still limited due to low expression efficiency. In this study, we described an improved vacuum-infiltration system that can be used in both tomato fruits and leaves. Notably, this study is the first report of vacuum infiltration in attached tomato fruits. The feasibility of the improved vacuum-infiltration system in Micro-Tom tomato was confirmed by various assays, including multiple fluorescent protein expression analysis, β-glucuronidase activity analysis, and RUBY reporter visualization. Subsequently, the improved vacuum-infiltration system was successfully applied to tomato biotechnology research. Herein, a trichome-specific promoter in tomato was identified that can drive the directional synthesis of specific plant natural products (PNPs). Additionally, based on the assessment results of the improved vacuum-infiltration system, we obtained a flavonoid-rich tomato variety through the stable transformation of AmRosea and AmDelila. In a significant practical application, we successfully synthesized the high-value scutellarin in tomato, which provides an alternative route for the production of PNPs from plants. In addition, the improved vacuum-infiltration system has been demonstrated to be suitable for commercial tomato varieties (‘Emerald’ and ‘Provence’) as well. The improved vacuum-infiltration system not only speeds up fundamental and applied research in tomato but also offers an additional powerful tool for advancing tomato synthetic biology research.